DSS example#

Find the linear combinations of multichannel data that maximize repeatability over trials.

Uses meegkit.dss0().

import matplotlib.pyplot as plt
import numpy as np

from meegkit import dss
from meegkit.utils import fold, rms, tscov, unfold

rng = np.random.default_rng(5)

Create simulated data#

# Data are time * channel * trials.
n_samples = 100 * 3
n_chans = 30
n_trials = 100
noise_dim = 20  # dimensionality of noise

# Source signal
source = np.hstack((
    np.zeros((n_samples // 3,)),
    np.sin(2 * np.pi * np.arange(n_samples // 3) / (n_samples / 3)).T,
    np.zeros((n_samples // 3,))))[np.newaxis].T
s = source * rng.standard_normal((1, n_chans))  # 300 * 30
s = s[:, :, np.newaxis]
s = np.tile(s, (1, 1, 100))

# Noise
noise = np.dot(
    unfold(rng.standard_normal((n_samples, noise_dim, n_trials))),
    rng.standard_normal((noise_dim, n_chans)))
noise = fold(noise, n_samples)

# Mix signal and noise
SNR = 0.1
data = noise / rms(noise.flatten()) + SNR * s / rms(s.flatten())

Apply DSS to clean them#

# Compute original and biased covariance matrices
c0, _ = tscov(data)

# In this case the biased covariance is simply the covariance of the mean over
# trials
c1, _ = tscov(np.mean(data, 2))

# Apply DSS
[todss, _, pwr0, pwr1] = dss.dss0(c0, c1)
z = fold(np.dot(unfold(data), todss), epoch_size=n_samples)

# Find best components
best_comp = np.mean(z[:, 0, :], -1)

Plot results#

f, (ax1, ax2, ax3) = plt.subplots(3, 1)
ax1.plot(source, label="source")
ax2.plot(np.mean(data, 2), label="data")
ax3.plot(best_comp, label="recovered")
plt.legend()
plt.show()
example dss

Total running time of the script: (0 minutes 0.234 seconds)

Gallery generated by Sphinx-Gallery