Causal phase estimation example#

This example shows how to causally estimate the phase of a signal using two oscillator models, as described in [1].

Uses meegkit.phase.ResOscillator() and meegkit.phase.NonResOscillator().

References#

import os
import sys

import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import hilbert

from meegkit.phase import NonResOscillator, ResOscillator, locking_based_phase

sys.path.append(os.path.join("..", "tests"))

from test_filters import generate_multi_comp_data, phase_difference  # noqa:E402

rng = np.random.default_rng(5)

Build data#

First, we generate a multi-component signal with amplitude and phase modulations, as described in the paper [1].

npt = 100000
fs = 100
s  = generate_multi_comp_data(npt, fs)  # Generate test data
dt = 1 / fs
time = np.arange(npt) * dt

Visualize signal#

Plot the test signal’s Fourier spectrum

f, ax = plt.subplots(2, 1)
ax[0].plot(time, s)
ax[0].set_xlabel("Time (s)")
ax[0].set_title("Test signal")
ax[1].psd(s, Fs=fs, NFFT=2048*4, noverlap=fs)
ax[1].set_title("Test signal's Fourier spectrum")
plt.tight_layout()
Test signal, Test signal's Fourier spectrum

Compute phase and amplitude#

We compute the Hilbert phase and amplitude, as well as the phase and amplitude obtained by the locking-based technique, non-resonant and resonant oscillator.

ht_ampl = np.abs(hilbert(s))  # Hilbert amplitude
ht_phase = np.angle(hilbert(s))  # Hilbert phase

lb_phase = locking_based_phase(s, dt, npt)
lb_phi_dif = phase_difference(ht_phase, lb_phase)

osc = NonResOscillator(fs, 1.1)
nr_phase, nr_ampl = osc.transform(s)
nr_phase = nr_phase[:, 0]
nr_phi_dif = phase_difference(ht_phase, nr_phase)

osc = ResOscillator(fs, 1.1)
r_phase, r_ampl = osc.transform(s)
r_phase = r_phase[:, 0]
r_phi_dif = phase_difference(ht_phase, r_phase)
/home/runner/work/python-meegkit/python-meegkit/meegkit/utils/buffer.py:68: UserWarning: Buffer overflow: some old data has been discarded
  warnings.warn("Buffer overflow: some old data has been discarded")

Results#

Here we reproduce figure 1 from the original paper [1].

The first row shows the test signal \(s\) and its Hilbert amplitude \(a_H\) ; one can see that ah does not represent a good envelope for \(s\). On the contrary, the Hilbert-based phase estimation yields good results, and therefore we take it for the ground truth. Rows 2-4 show the difference between the Hilbert phase and causally estimated phases (\(\phi_L\), \(\phi_N\), \(\phi_R\)) are obtained by means of the locking-based technique, non-resonant and resonant oscillator, respectively). These panels demonstrate that the output of the developed causal algorithms is very close to the HT-phase. Notice that we show \(\phi_H - \phi_N\) modulo \(2\pi\), since the phase difference is not bounded.

f, ax = plt.subplots(4, 2, sharex=True, sharey=True, figsize=(12, 8))
ax[0, 0].plot(time, s, time, ht_phase, lw=.75)
ax[0, 0].set_ylabel(r"$s,\phi_H$")
ax[0, 0].set_title("Signal and its Hilbert phase")

ax[1, 0].plot(time, lb_phi_dif, lw=.75)
ax[1, 0].axhline(0, color="k", ls=":", zorder=-1)
ax[1, 0].set_ylabel(r"$\phi_H - \phi_L$")
ax[1, 0].set_ylim([-np.pi, np.pi])
ax[1, 0].set_title("Phase locking approach")

ax[2, 0].plot(time, nr_phi_dif, lw=.75)
ax[2, 0].axhline(0, color="k", ls=":", zorder=-1)
ax[2, 0].set_ylabel(r"$\phi_H - \phi_N$")
ax[2, 0].set_ylim([-np.pi, np.pi])
ax[2, 0].set_title("Nonresonant oscillator")

ax[3, 0].plot(time, r_phi_dif, lw=.75)
ax[3, 0].axhline(0, color="k", ls=":", zorder=-1)
ax[3, 0].set_ylim([-np.pi, np.pi])
ax[3, 0].set_ylabel(r"$\phi_H - \phi_R$")
ax[3, 0].set_xlabel("Time")
ax[3, 0].set_title("Resonant oscillator")

ax[0, 1].plot(time, s, time, ht_ampl, lw=.75)
ax[0, 1].set_ylabel(r"$s,a_H$")
ax[0, 1].set_title("Signal and its Hilbert amplitude")

ax[1, 1].axis("off")

ax[2, 1].plot(time, s, time, nr_ampl, lw=.75)
ax[2, 1].set_ylabel(r"$s,a_N$")
ax[2, 1].set_title("Amplitudes")
ax[2, 1].set_title("Nonresonant oscillator")

ax[3, 1].plot(time, s, time, r_ampl, lw=.75)
ax[3, 1].set_xlabel("Time")
ax[3, 1].set_ylabel(r"$s,a_R$")
ax[3, 1].set_title("Resonant oscillator")
plt.suptitle("Amplitude (right) and phase (left) estimation algorithms")
plt.tight_layout()
plt.show()
Amplitude (right) and phase (left) estimation algorithms, Signal and its Hilbert phase, Signal and its Hilbert amplitude, Phase locking approach, Nonresonant oscillator, Nonresonant oscillator, Resonant oscillator, Resonant oscillator

Total running time of the script: (0 minutes 10.427 seconds)

Gallery generated by Sphinx-Gallery